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ABSTRACT

In this report a method is proposed to treat the problem of

steady, two-dimensional, laminar, incompressible, high Reynolds number

separated flow past thin airfoils. An integral form of the boundary-

layer equations with interaction is used and the interaction between the

inviscid and viscous flowfields is provided for by use of a thin-airfoil

integral. A detailed documentation of the attempts at obtaining a

solution is presented. Even though these attempts were essentially

unsuccessful, they help to suggest paths for future research on this

difficult problem. In addition, a useful survey of the current state-

of-the-art of problems involving viscous-inviscid interactions in flow-

fields with separation is given.
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CHAPTER I

INTRODUCTION

The problem under consideration is the theoretical study

of laminar, steady, incompressible, high Reynolds number separated

flow past two-dimensional airfoils. The quantitative description of

flowfields containing separation is one of the major unsolved problems

of fluid mechanics. To appreciate the difficulty involved in the

proposed research, consider first the laminar, incompressible, high

Reynolds number flow along a rigid surface.in the absence of regions

of separated flow.

Prandtl demonstrated that the effects of viscosity can be

considered to be confined to a narrow region - with thickness proportional

to the inverse square root of the Reynolds number - close to the

surface. He proposed the boundary-layer equations as an accurate

approximation to the Navier-Stokes equations for flows with large

values of the Reynolds number. To first order in the inverse square

root of the Reynolds number, the pressure distribution does not vary

across the boundary layer and may be obtained by a computation of the

potential flow past the surface. The boundary-layer equations may

then be integrated with this pressure distribution as a known quantity -

various accurate numerical techniques are available, for example.

Van Dykel has shown how corrections may be added to the first-order

solution to account for streamline displacement and surface curvature

effects.
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In the event that regions of separated flow are present

along the surface of the body, the viscous layer thickens rapidly

and first-order perturbations may be introduced into the outer

potential flow field. This violates the result of classical boundary-

layer theory that the outer flow to first order is independent of

the boundary layer. With this breakdown of boundary-layer theory in

the region near the separation point, it would seem that the appropriate

path to follow to compute the flowfield with separation present is to

integrate the complete Navier-Stokes equations.

At the time this research was initiated, it was felt that

a numerical solution of the Navier-Stokes equations for this problem

was beyond the state-of-the-art and up to the time of the writing of

this report, this is still the case. Navier-Stokes solutions to the

high Reynolds number separated flow situation are still not available

although much progress is being made in the development of suitable

numerical techniques. Recently, Davis2 and Davis and Werle 3 have

developed a numerical scheme for integrating the Navier-Stokes equations

for flow past the parabola and paraboloid of revolution at all values

of the Reynolds number. It remains to be shown whether this technique

will prove suitable for the separated flow problem. Jacob4 uses a

boundary layer - inviscid outer flow iteration scheme to treat airfoil

separated flow problems but uses a crude dead-water model for the

separated flow and wake regions. The results compare well with available

experiments. Similar treatment for the circular cylinder problem is

presented in Bluston and Paulson5

2



An appropriate technique for the solution of this problem

will have to allow for interaction between the outer inviscid flow

and the inner viscous layer. Strong interaction problems of this type

where the viscous and inviscid layers develop simultaneously have been

successfully treated for the case of a supersonic outer stream by Lester

Lees and co-workers at the California Institute of Technology using

a method known as viscous-inviiscid interaction theory. Some illustrative

examples of this method are presented in Klineberg and Lees6 and Alber7

In the latter, Alber outlines an approach for the solution of the

incompressible turbulent wake problem.

The essential features of the viscous-inviscid interaction

theory are as follows. It is assumed that the boundary-layer equations

adequately describe the important features of the flow in the viscous

region. Their use is modified, however, since the outer flow pressure

gradient is not known in advance but is calculated simultaneously with

the variables in the viscous region. The partial differential equations

valid in the viscous layer are integrated across the layer and are thereby

reduced to a set of ordinary differential equations. An equation is

introduced to link the outer inviscid and inner viscous flowfields,

and the complete set of equations is integrated with the inviscid

surface speed as one of the unknowns. For the case of the supersonic

outer stream, the linking equation usually is of the form of a Prandtl-

Meyer relation.

At the initiation of this research, it was proposed to extend

the method of viscous-inviscid interactions to allow for the solution
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of the incompressible flow problem under consideration. The main

task was then to develop an appropriate equation or technique to

link the inviscid and viscous flow regions. This task is complicated

since the inviscid flowfield is governed by an elliptic partial

differential equation (Laplace's equation) for the incompressible case

so that the surface speed at any body location is dependent on the

complete displacement thickness distribution. It was clear that to

discover the appropriateness of this technique for the solution of

this problem it would be useful to choose a flow configuration which

would allow for simplifying approximations in the treatment of the

inviscid flowfield. A thin symmetric Joukowski airfoil seemed an

ideal choice since simplifications could be introduced to take advantage

of both the symmetry and the small flow disturbances. A thin-airfoil

integral could then be used as the linking equation and the need to

compute the detailed inviscid flowfield is removed.

In the following chapters, the method is developed and

several attempts at solution are discussed. Since a solution was

hot obtained, it was felt most appropriate to present the results

of the research in an essentially chronological sequence to allow

the reader to determine the approaches attempted and their subsequent

outcomes.

The problem for separated flow past biconvex airfoils has

recently been solved for both subsonic and transonic flowfields by

Klineberg and Steger8 of NASA-Ames Research Center. They found it

4



necessary to compute the complete inviscid flowfield using the

finite-difference relaxation technique developed by Steger and

Klineberg9 and to make use of an interactive computer graphics

system. Also, attempts are currently underway to solve the interaction

problem without resorting to an integral representation for the

viscous region. Klemp and AcrivoslO and others have developed

numerical techniques for the integration of the boundary-layer

equations through a reverse flow region and Erdos, Baronti and

Elzweig l discuss the inclusion of such a technique in a method for

the solution of a transonic interaction problem.

At present, research is underway to study interaction problems

for flows ranging from incompressible to hypersonic and for both

the laminar and turbulent cases. In this report, in addition to a

description of the present research (Chapters II and III), a detailed

discussion is given of the results of Klineberg and Steger8

(Chapter IV) and a survey is presented of the current state-of-the-

art in the area of viscous-inviscid interactions (Chapter V).
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CHAPTER II

MATHEMATICAL FORMULATION OF PROBLEM

A. Viscous Region

Consider the two-dimensional steady laminar flow of an

incompressible fluid at high Reynolds number. Classical boundary-

layer theory would require a consideration of the continuity and

streamwise momentum equations. For the formulation of this interaction

problem, it is necessary to include the mechanical energy equation

which is obtained by multiplying the streamwise momentum equation by

the streamwise velocity component. The coordinate system used is

shown on Figure 1. s and n are distances measured along and normal

to the surface, respectively. u and v are the velocity components in

the s and n directions. p is the pressure, p is the density and p is

the dynamic viscosity coefficient.

The governing partial differential equations are

Continuity: Du + = (1)as an

Streamwise Momentum:

p(u au + v ) = - dp+ (2)as an ds - 'n

Mechanical Energy:

p(u2 aU + uv 3 = - d + u a2  (3)as an ds a 2

The equations are now integrated across the boundary layer,

from the surface n = 0 to the boundary-layer edge n = 6. At the surface,

u = = O. At the edge, u = ue(s), v = ve(s) and the shear stress

au/an = O. The integrated equations are
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Ve d6* * d'nue
tan - (6 -ds6 )

ue  ds ds

d U2 0 + 6 ue =ue au
ddu-e =e 'ds (I n=O/P

ds e an

where v = p/p, the kinematic viscosity, e is the streamline direction

at the boundary-layer edge, and 6 , 6 and 6 are the displacement,

momentum and energy thicknesses given by

6 = 6(1 -
o e

e = u (1 - -)dn

. U2e = r~ e (1 ~e)dn
f e e

depend on

(4)

(5)

(6)

(7)

It is convenient to introduce the following quantities which

the streamwise velocity profile.

H = e/6
* *

J = 0 /6

Z = 6 u dn (8)
6* ue

0

R = 26 [l u)]2 dn

P 6* [-( (U e) n =
e

7



One profile shape parameter, say a(s), is chosen and the

other profile quantities in Equation (8) will be determined as functions

of it. Equations (4-6) can then be written:

. dud6 Z6 e
= tan e (9)

* * du

d eHs+ e +6 ds ue6*
H - + 6 (2H+1) -e + dH da vP (10)

* * du
d6 3J6 e * dJ dH da vR

+ d +6 = (11)
Hi Ue ds e T da ds Ue6*

The unknowns in these three ordinary differential equations

are 6 , ue, o and a(s). This set of equations is known as the strong

interaction equations when ue is considered unknown. The outer inviscid

flow is then coupled to the inner viscous flow.

The flowfield can be divided into four distinct regions in

terms of the nature of the velocity profiles. They are illustrated in

Figure 2. Region I, the body-attached flow region, extends from the

leading edge to the separation point. Region II, the body-reverse

flow region, extends from the separation point to the trailing edge.

Region III, the wake-reverse flow region, extends from the trailing

edge to the rear stagnation point of the wake. Region IV, the wake

forward flow region, extends from the wake rear stagnation point to

downstream infinity. Following Klineberg and Lees6 and Klineberg, Kubota

and Lees12 , a(s) is defined in the four regions as

8



a(u/u e )
Region I a = a(/T no

Region II a = u/u =
6 u/ue = 0

Region III a = [u

Region IV a = [u

a(s) is therefore the wall shear stress, the thickness of the reverse

flow region and the velocity ratios on the dividing streamline 0 = O

and the wake center line, respectively.

Similar solutions to the classical boundary-layer equations

are available for profiles characteristic of each of the regions. It

is assumed that the functional relationships between the profile quantities

in Equation (8) and a(s) are the same as those for the similar solutions.

It is noted, however, that no dependence between profile shape and local

pressure gradient is assumed. Extensive curve fitting has led to accurate

polynomial representation of the profile quantities as functions of a(s).

These are presented in Appendix A for each region. The results for

the profiles in regions I and II are those in Klineberg and Lees6 and

for profiles in regions III and IV are those in Klineberg, Kubota and

Lees12. This choice of a(s) is made because of the availability of

the above curve fits. A better choice might be H since it has one

definition in the flowfield - Klineberg and Steger8 use H in their analysis.

Boundary-layer theory predicts that tan 0, 6 and 6 are of

order v1/2. To work with variables of order one, the following scaling

9



is introduced.

(tan e)' = v1/2 tan o

(d) ! = -1/2
(6 -/ 6 (13)

6 = V-1/2 6

The new variables are substituted into Equations (9-11) and the primes

are dropped. To put the equations in a suitable form for numerical

integration, Kramer's Rule is used to isolate the first derivatives.

The equations become

d6* du da

E D ' ds D ' ds D

where

dJ dJ .R)/Ue6*
D1 = tan o [(2H+l) Fi - 3 + Z (P - R)/u

edHD (P Q - R)/6*2 -ue tan o (H A 0/6

D3 = [R(2H+1+ZH) - PJ(3+Z)]/(u 6*2 H ) + J tan e (H-l)/6*

D - (2H+1+ZH) - J(3+Z)

B. The Interaction Equation

There are now three viscous flow equations and four unknowns,

one of them being ue, the inviscid streamwise velocity component at the

boundary-layer edge. It is necessary to introduce an equation to close

the system and this equation is the important one which provides for

10



the interaction between the viscous boundary layer and the outer inviscid

flow. For problems with a supersonic outer stream, a Prandtl-Meyer

relation is usually used to link 0 and ue. The problem becomes complicated

in incompressible flow because the inviscid equations are elliptic and

therefore global in nature. The local boundary-layer edge velocity

depends on the displacement thickness distribution in the complete flow-

field.

Consider the flow schematic shown in Figure 3 where UZ is the

free stream speed. x and y are along and normal to the chordline. Let

U and V be the velocity components in the x and y directions, respectively.

With viscous effects included, the effective body shape is obtained by

adding the displacement thickness to the body. Note that 6 is measured

normal to the body surface. Let y = f(x) represent the body and let

its geometry be such that thin-airfoil theory approximations are valid.

The effective body shape is represented by a distribution

of sources along the x - axis of strength q(x) per unit length. The

velocity potential for the irrotational flow is then

+(x,y) = U x + 7 fs q(§) log [(x-§)2 + y21/2d§

where

q(x) = 2U Ax [f(x) + V1/2 6*/(1 + (f 2)1/2]

To the order of approximation of thin-airfoil theory, (df/dx)2<<l and

can be neglected in the above equation. Now,

11



V_ U F df 1/2 dS

V =  U (§ ) + 9 /'E ( § )] (- +yZ ds
U *

V = =df + v1'/2 dS
ay Jr T I (a) + ai

0
and

1/2 (tan )inviscid = ( /2

1 rdf ) + d1/2 d6 ()[f(x)+v/26(x

0 (X-§) 2+,(f+v '6 )2 -

Note that (tan e)inviscid is measured with' respect to x while tan e is

measured with respect to s or the local body slope. Therefore,

v1/2 tan o = v/(tan O)inviscid - a'

and finally, the equation linking the flowfields is

tan e= f(x)+v/ 26(x) [df + 1/2 d (§)] d

(X-§)2+(f+v 6)2

-1/2 dX (15)

C. Matching Conditions

For the viscous calculation, there are four distinct regions with

different definitions of profile parameter a(s) and different polynomial

relationships between the profile quantities. It is therefore necessary to

enforce matching conditions as the solution progresses from one region into

another. Physical considerations lead to the condition that displacement

thickness 6 and inviscid speed ue are continuous across region boundaries.

12



Since a(s) is defined differently in each region, conditions on it

are considered sepa:ately. In region I, a(s) is the wall shear stress

and the region ends at the separation point a = 0. In region II, a

is the thickness of the reverse flow region and a = 0 at the start of

the region. In region III, a is the dividing streamline velocity ratio.

At the trailing edge, let a(II) be the value in region II and a(III)

be the value in region III. Klineberg, Kubota and Lees 12 have developed

a curve fit for a(III) as a function of a(II) and it is used as the

trailing edge matching condition.

a(III) = .05496 a(II) + .29702 a(II)2  (16)

+ 11.19943 a(II)3 - 21.66525 a(II)4  + 10.06854 a(II)5

At the end of region III, the wake rear stagnation point, a = O. At

the start of region IV, a is the wake centerline velocity ratMio-and is also zero.

D. Airfoil and Initial Potential Flow Solution

An airfoil must be selected such that separation will occur

but also such that thin-airfoil approximations will be appropriate. A

symmetric airfoil at zero angle of attack is chosen so that the difficulties

involved with correctly determining the circulation do not add to the

complexity of the problem. For ease in calculation of the initial potential

flow, a Joukowski airfoil section is used.

Van Dykel3 states that to second order a Joukowski airfoil

is represented by

y = c(2-x)(2x~x 2)1/ 2  (17)

where the chord is 2 and the maximum thickness ratio is 33/2 /4. For

the 10% thickness ratio used in the analysis, E = .077. The surface speed

13



Ue can easily be determined by use of conformal mapping. The

Joukowski transformation maps the airfoil into a circular cylinder.

To obtain ue(s), it is necessary to compute s(x). The airfoil,

its slope and surface speed are given in Figure 4.

14



Chapter III

METHODS OF SOLUTION

The mathematical problem to be solved is given in Equations

(14) and (15) with the appropriate polynomial representations of the

profile quantities (Appendix A) and the matching conditions. The

Reynolds number considered is of the order of 104.

A. Karman-Pohlhausen on Airfoil Forward Portion

Initially, it was felt that the upstream influence of the

separated flow region would be of limited extent. Therefore, the

flow variables in the leading-edge portion of the airfoil would have the

values predicted by classical boundary-layer theory. This assumption

removes the need to use Equation (16), the linking equation, in the

airfoil stagnation point region where the thin-airfoil approximations

are invalid.

For ease of computation, the boundary-layer equations were

integrated using the Karman-Pohlhausen method as described in Schlichtingl4

This integral method was chosen because it is accurate in regions of

accelerated flow and also because the integral quantities it provides as

output are just those needed in the interaction scheme. A more accurate

finite-difference calculation could easily be used to replace the Karman-

Pohlhausen scheme.

The Karman-Pohlhausen method was applied to the Joukowski

airfoil with the previously calculated ue distribution. The separation

point was predicted at approximately s = .66S where S is the arclength of

the airfoil. At tne stagnation point, the method yields
, du

a = 3.192, 6 = .641/-d-1s=O

15



It should be noted that the displacement thickness distribution

agrees more closely with the finite-difference results than does the profile

shape parameter a distribution.

To begin the computational procedure, an initial estimate for

tan o(s) is needed. Equation (15) shows that this requires initial

estimates of the 6 and 6 distributions. Since the tan o distribution will

be continually updated in our interation procedure, a reasonable estimate

is all that is necessary. The Karman-Pohlhausen results are used up to

separation and then the estimates are guided by the experimental results

of Preston and Sweeting 5. For simplicity, the boundary layer thickness

is assumed to increase linearly even though in the far wake it should become

proportional to sl/2 tan o is much more sensitive to 6 than to 6 and some

numerical experimentation was necessary to obtain a reasonable 6 estimate.

6 was assumed to increase linearly from the separation point to the

trailing edge and then to follow the equation

6 = 1 + 12(S/s)1/2

in the wake which exhibits the proper asymptotic behavior in the far wake.

A description of the computational procedure is given below.

(1) tan o(s) is calculated from Equation (15) using Simpson's Rule for

the numerical integration. 6 and 6 are held fixed at their boundary-

layer values for the first 15% of the arclength so that tan O need only

be calculated for s > .15S. The integration proceeds up to s = 15S

since integration further downstream did not appear to affect the results

on the airfoil.

16



(2) Equations (14) are integrated numerically in the interval

.15S < s < 15S using a Runge-Kutta program from the University

of Maryland Computer Science Center library. tan o is taken as the

average value at the endpoints of each interval. At s = .15S, a,6

and ue are taken from the Karman-Pohlhausen results. The integration

yields updated values for 6,6 , a and ue.

(3) The cycle is repeated with the newly calculated values of 6 and 6

being used in (1)

Far downstream, ue should approach U. and 6 should approach

a constant value. For a solution to be obtained the iteration procedure

above must converge and be independent of the starting point for the

strong interaction integration (taken arbitrarily above as .15S).

It is difficult to assess whether the above procedure has in

fact converged. It would appear to depend to some extent on which

variables are being monitored. A typical computation is demonstrated

in Table 1 where the variables shown are the separation point location,
* *

a,6 and ue at s = 15S and 6 at the airfoil trailing edge. The separation

point moves closer to the airfoil leading edge with each iteration (eight

iterations are recorded). The resulting solution is highly suspect since

it seems unlikely that for the thin airfoil under consideration the

separation point would occur so great a distance upstream of the value

predicted by classical boundary-layer theory.

Some typical distributions of 6 , ue and tan o are shown in

Figures (5-9) for three iteration cycles. Note that some of the variables

17



deviate immediately from the Karman-Pohlhausen results at the start of

the strong interaction region. This is in violation of the assumption

made regarding the limited upstream influence. Attempts to improve the

convergence properties of the scheme by using under-relaxation in updating

Equation (15) met with failure.

Solutions were attempted with the starting point taken further

from the leading edge and when the strong interaction computations were

begun for s 2 .40S, the scheme appeared to converge but the computed

separation point proved to then be dependent on the starting point. For

example, for starting points of .40S, .45S and .50S, the calculated

separation points were .49S, .54S and .58S. This is clearly unacceptable.

The results at the end of 10 iterations for the starting point of .50S

are shown in Table 2.

B. Weak Interaction Equations in Airfoil Forward Portion

To be more consistent in the analysis, it is felt that the

equations used in the forward portion of the airfoil should be the

same as those used elsewhere. This should lead to smoother joining at

the start of the strong interaction region. Consider the differential

equations (9-11). In the leading-edge region, it is assumed that ue

is given from the potential flow solution. Equation (9) is now eliminated

and Equations (10-11) will be integrated to obtain 6 and a, using the

known ue distribution. This abbreviated set is known as the weak interaction

equations.

6, 6 and tan o are again scaled with v1/2 and the first derivatives

are obtained in the form of Equations (14).
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d6 da =2 (18)
ds N ' ds NI

where

N1 = [(P d du e dJ idHuN = [(P dW . R) + 6 de (3J - (2H+l) )] /e)

* * du eN2 = (RH-PJ)/6 ue + 6 ds J(l-H)/ue

*U dJN =6:ab d J)

The computational scheme now proceeds essentially-the same as

in Part A. The weak interaction equations are integrated from the leading

edge to a point at the start of the strong interaction region, a distance

far upstream of separation. This solution provides the starting values

of 6 , a and ue for the strong interaction computation. The weak interaction

equations predict separation at approximately 50% of the arclength so the

initial estimates for a and 6 must be suitably modified.

Care must be taken in starting the weak interaction solution

at the leading edge. Note that at the leading-edge stagnation point,

da da -both A- and ds are proportional to u . Since these derivatives mustZs e

both be finite at s = 0, the following relationships can be obtained at

s = 0 from Equations (18).

3PJ = R(2H+l) (19)

6*2 = P/(2H+1) dus=oaIs=o

19



The first expression leads to a = 2.967. The equations have

a saddle point singularity at the leading edge. For the first .1% of the

arclength, a similar solution is assumed so that a = 2.967 = constant.

Equation (10) is integrated analytically from s = 0 to s = .001S using

average values of ue and due/ds in the interval. The result is

du e  du e  d u e  2(2H+1) (1 due
*2a nueicall inere-) (.001S)6 (Ue (0H u S

where avg stands for the average of the end point values. Equations (18)

are numerically integrated downstream from s = .001S with care being taken

to use small intervals in the leading-edge region. The weak interaction

solutions for a and 6 are compared to the Kairman-Pohlhausen results in

Figure 10.

The complete scheme was run with the strong interaction region

starting at both 15% and 30% of the arclength. There is no appreciable

difference from the results of Part A.

Another suggestion (Klineberg 1) is to match the momentum thickness

at the trailing edge rather than the velocity on the dividing streamline.

Since H = e/6 and 6 is continuous, this is equivalent to forcing H to

be continuous at the trailing edge. In region III,

H = .24710 - .43642a - .04773a2 - .19654a 3 + .41918a4

At the trailing edge, H is known from its value in region II

and a is determined from the above equation. Use of this matching condition

had little effect on the results.
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C. Velocity Dependent Interaction Equation

It has been suggested (Klineberg16) that the reason for the lack

of success of the scheme is the possibility that Equation (15) and the

integral continuity equation are not independent equations. Therefore, a

new form of the equation linking the viscous and inviscid regions will

be considered. It is obtained by a simple modification of the result given

in Alber 7 for the incompressible wake.

Let U and V be the perturbation velocity components of the

potential flow. Since they are harmonic conjugates, they are related by

use of the Cauchy Integral Formula and the thin-airfoil approximation

in the following equations.

U(x,y) = V(§,0 } yzd§

V(x,y) = - (X-§)U+

This representation is formally equivalent to representing the

effective body by a vortex distribution on the chordline. Now,

U(x,y) = Ua + U(x,y) and U/Ul<<l

Therefore,

V(xf(x)+vl/2 (x))
(tan O)inviscid = U

1 (x-§)-U(10U ds
: _(x-§)2+ (f+vl 6)2

On the surface, the limiting process of boundary-layer theory

yields U(§,O) = ue(§). Using this and the previously developed relationship

between (tan e)inviscid and tan e, the new form of the linking equation

becomes
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1 (X )[l-U (§)/U ]tan o = - I. (' l e dg-l ( -l (20)
I c(X-§ )2 + (f- I/ 26)2

Note that tan e now depends on ue instead of 6

To obtain an initial estimate for the tan o distribution,

several ue distributions were tried but it proved difficult to choose a

ue distribution which would lead to a reasonable tan o. The next approach

was to assume a tan e distribution directly for the first iteration cycle.

It was possible to select tan o distributions which led to

apparently reasonable values of ue and the other flow variables in

the first iteration cycle but which yielded an unacceptable tan e distribution

for the second cycle. To demonstrate the sensitivity of the scheme,

consider the two tan e estimates.

tan e = 5 sinn s/2S s < S

= -2(S/s)3/2 s > S (21a)

and tan e = 6 sins s/2S s ~ S

= -2(S/s) 3/2  s > S (21b)

The ue distributions from the first iteration cycle are shown

in Figure 11. The resulting tan e distributions are shown in Figure 12.

In Figure 13, the tan o integral is separated into its airfoil and wake

components. The term due to the airfoil slope is also shown. It can

be seen that the major differences in the two cases stem from the wake

contribution to the integral and that tan o is very sensitive to the wake

results. Note also that the airfoil slope term is dominant over a large

portion of the airfoil. It is difficult to obtain a tan o distribution
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in the second cycle which is not negative for a substantial portion

of the leading-edge region and this leads to unreasonable predictions

from the viscous computation. With the above formulation, it was not

possible to obtain reasonable results for more than two or three iteration

cycles.

In the previous formulation of the linking equation, there

is no contribution to the integral from the flowfield upstream of the

leading edge. Equation (20), however, has a contribution from this

region since ue ! U in the upstream neighborhood of the leading edge.

ue was calculated from potential flow theory for x< O,y=O. This portion

of the ue distribution is shown in Figure 14. Inclusion of these

results improves the tan e distribution on the airfoil but has a harmful

effect in the wake region. tan e with the upstream effect included is

compared to the 'result with the latter initial estimate in Equation (21)

in Figure 15.

At this time it was decided that the form of the linking equation

given in Equation (20) was too sensitive to the flow quantities to be use-

ful and that the most productive path to follow was to return to the

formulation of Equation (15) and work towards developing-a means to

correctly update the solution in the leading edge region with each iteration

cycle.

It is possible that the decision to abandon the formulation

of the linking equation presented here was a mistake. In their success-

ful treatment of a similar problem, Klineberg and Steger8 also encountered

difficulty in the initial iterations due to erroneous wake results.
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Their fix was to initially choose the downstream boundary of their

computation region to be close to the airfoil trailing edge and to

gradually move it downstream as the calculations proceeded. Also,

they used rather strong under-relaxation to improve the scheme's stability.

D. Updating of Solution in Airfoil Forward Portion

A major deficiency of the method as it has been used is that

the weak interaction solution is fixed for the forward portion of the

airfoil up to the joining point with the strong interaction region.

The flowfield near the leading edge is not allowed to adjust to the

downstream changes in the displacement thickness distribution. This

enforces a certain dependence of the final solution on the choice of a

joining point - it is not clear, however, whether this alone has prevented

a solution from being obtained.

It is necessary to develop a method to calculate the potential

flow surface speed for the flow past body plus displacement thickness

which is more accurate than first-order thin-airfoil theory in the important

leading-edge region. This method must be computationally easy to use

or the purpose of originally using the thin-airfoil approximations will

be defeated. Von Karman had developed such a method for the solution

for the potential flow past axisymnetric bodies. The method has been

modified here for use in the two-dimensional case.

The airfoil chordline is divided into constant length intervals

and a source distribution is introduced with the source itrength being
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constant for each interval. It is therefore necessary to calculate

a finite number of source strengths. A major cause of error in the

thin-airfoil approach is caused by the linearization and the transfer

of the body boundary condition to the chordline. Both of these

deficiencies are overcome fn Von Karman's method since the exact

boundary condition is used and it is satisfied on the actual surface.

The boundary condition is satisfied at the surface points corresponding

to the midponts of the constant source intervals. The result is a

set of linear equations for the unknown source strengths which is solved

numerically.

The details of the method are described in Appendix B. A

comparison of the results for the Joukowski airfoil with the exact

solution and the first-order thin-airfoil result for surface speed is

given in Figure 16. Agreement with the exact solution is very good for

distances greater than about .03S from the leading edge. The smallest

constant source interval that could be used without introducing fluctuations

into the surface speed was .Olc: where c is the chord length.

This potential flow method is now incorporated into the computational

scheme. To insure continuity from iteration to iteration, the results

for the airfoil itself were used in the first iteration cycle. The

scheme proceeds as before except that at the start of,each cycle, the

potential flow past the body plus its displacement thickness from the

previous cycle is computed and the weak interaction equations are integrated

to provide the joining values at the start of the strong interaction

region. The effective body is terminated at the now open trailing edge -
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this is consistent with current techniques for "exactly" calculating

the flow past two-dimensional bodies with displacement thickness

added (see, for example, Stevens, Goradia and Braden 18, where the

effective'airfoil is terminated closely behind the trailing edge). When

the displacement thickness is added, the smallest source interval

that can be used without smoothing the results is approximately .02c.

The results of three iteration cycles are shown in Figures

17-20. The effective body after one cycle is shown in Figure 17.

The displacement thickness distribution is given in Figure 18 and ue

is given in Figures 19 and 20, the former showing the very small change

in the surface speed in the leading-edge region from the first to the second

iteration. The addition of the updating of the leading-edge portion

of the flowfield does not appear to appreciably affect the results.

The trend is indicated in Table 3. An acceptable solution still cannot

be obtained.

As a final note, another deficiency of the method is discussed.

For the strong interaction region, tan e is calculated from the linking

integral equation and used as input in the integral continuity

equation. This continuity equation is not satisfied in the weak interaction

region. The question arises, in consideration of the smoothness of the

joining, as to the value of tan e that is computed at the joining point

by use of the continuity equation. For the previous set of computations,

tan e was calculated at the joining point from both equations and the comparison

appears in Table 4. It is noted that the discrepancy between the values

is less than )0%..
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CHAPTER IV

SOLUTION OF KLINEBERG AND STEGER

Klineberg and Steger8 have obtained solutions for subsonic and

transonic separated flow past circular arc airfoils. The main difference

between their computational technique and the one reported here is that

they obtain a solution for the complete inviscid flowfield by use of a

finite-difference relaxation scheme. Their method will now be described

in the context of the previously reported procedures.

A. Viscous Flow

The system of equations which describes the flow in the viscous

layer is the compressible flow equivalent to Equations (9-11). The four

unknowns are chosen to be ue, ve, 6 and H where ve is used instead of

tan e and H is chosen as the profile shape parameter.

The flow over the airfoil is divided into weak and strong

interaction regions. In the weak interaction region, ue is obtained from

the inviscid flow calculation and the equivalent of Equations (10-11)

are solved by Runge-Kutta integration. The equivalent of Equation (9)

is then integrated to obtain ve. A similarity solution is used to start

the calculation at the leading edge. In the strong interaction region,

ve is given from the inviscid calculation and 6 , H and ue at the joining

point are given from the weak interaction solution. 6 , ue and H are

taken to be continuous at the boundaries of the four distinct profile

regions.

B. Inviscid Flow

The flowfield outside the viscous region is considered to

be irrotational and the transonic small disturbance approximation and
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thin-airfoil boundary conditions are assumed. The governing partial

differential equations are the continuity equation and the statement

of the irrotationality of the flow in terms of the velocity components.

Mixed boundary conditions are specified since the viscous computation

yields ve in the weak interaction region and ue in the strong interaction

region. Figure 21 shows a map of the flow regions. The equations are

solved using the finite-difference relaxation scheme described in Steger

and Klineberg9

C. Complete Interaction

A complete interaction is calculated by alternately iterating

the solutions to the viscous and inviscid equations. The sequence of

computations is described as follows:

(1) Solve the inviscid equations for the given airfoil. Compute the

surface pressure distribution.

(2) Solve the weak interaction equations from the leading edge to the

joining point. For the biconvex airfoils used, the joining point

is chosen upstream of the maximum thickness location at 40% of

the chord.

(3) Integrate the continuity equation to obtain ve. Downstream of the

joining point, ve is arbitrarily specified in the first iteration

cycle.

(4) Integrate the strong interaction equations using the assumed ve.

Compute the ue distribution.

(5) Solve the inviscid equations with the mixed boundary conditions

corresponding to ve in the weak interaction region and ue in the

strong interaction region. Compute ue in the weak interaction

region and ve in the strong interaction region.
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(6) Alternate between viscous and inviscid solutions until convergence

is achieved. The boundary conditions for the current viscous/inviscid

computation are provided by the previous inviscid/viscous computation.

It is noted that the viscous and inviscid problems are linked

through the surface speed in the strong interaction region. This technique

is therefore related to the attempt to use Equation (20) as the linking

equation in the previously reported research. It is recalled that this

attempt was abandoned due to the sensitivity of the scheme to the flow

variables in the initial stages of the computation.

It is perhaps significant that Klineberg and Steger encountered

similar difficulties. Until their scheme converges to a solution, the

viscous layer integration diverges in the wake and generates unacceptable

values of ue for use as boundary conditions for the inviscid problem.

This difficulty is resolved in two ways. First, the location of the

downstream boundary of the computation region is chosen close to the

trailing edge initially and is moved downstream as the scheme progresses.

Second, under-relaxation is employed in updating the inviscid flow boundary

conditions in the wake. The above solution is aided by the use of an

interactive computer graphics system. The discrepancy in tan e at the

joining point that was inherent in the previous research is absent from

the Klineberg and Steger technique since the continuity equation supplies

tan e for the inviscid flow computation in the weak interaction region.

Results were obtained for a range of Reynolds numbers and Mach

numbers for 6% and 12% thick biconvex airfoils. The results are independent

of the initially chosen ve distribution and joining point location. For

some cases, an approximation to simulate a turbulent wake was included.
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A typical solution is shown in Figure 22 to illustrate the distributions

of ue, 6 and H. M. is the free stream Mach number, Rec is the chord

Reynolds number, SEP indicates the separation point and RSP indicates the

wake rear stagnation point. The final downstream boundary is located

only 2.5 chordlengths downstream of the trailing edge. It is noted

that previously the calculated distributions did not appear to approach

asymptotic downstream values until much further downstream.

Comparison with the experimental results of Collins (unpublished)

is shown in Figure 23. Agreement is good when the turbulent wake

approximation is used. The effects of Reynolds number and Mach number

are demonstrated in Figures 24 and 25. In these figures, Cp is the

pressure coefficient.
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CHAPTER V

CURRENT RESEARCH IN VISCOUS-INVISCID INTERACTIONS

At present, much work is being done in the area of viscous-

inviscid interactions in flowfields with separation present.

Research teams at various government, university and industrial

laboratories are studying problems where the free stream is subsonic,

transonic, supersonic and hypersonic, laminar and turbulent, and where

the governing equations considered are either some form of the boundary-

layer equations or the complete Navier-Stokes equations. In this chapter,

an attempt is made to survey the current state-of-the-art and to

essentially present a preview of what can be expected to appear in the

literature in the next few years. This survey is by no means all

inclusive.

The only solution to a subsonic interaction problem including

separation to appear in the literature apparently is the solution of

Klineberg and Steger8 of NASA-Ames Research Center which is discussed

in detail in Chapter IV. Their method employs an integral form

of the boundary-layer equations and uses a finite-difference relaxation

technique to solve for the inviscid flowfield. Due to the computational

difficulties encountered in using the integral approach in the viscous

region, no attempt has been made to extend the results. Klineberg is

currently studying under what conditions regular solutions to the

boundary-layer equations which admit regions of separated flow exist.

Armed with this information, the group at Ames may again attack sub-

sonic and transonic interaction problems using finite-difference techniques
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in the viscous as well as the inviscid region.

A finite-difference technique to integrate the boundary-layer equations

through regions of reverse flow is presented in Erdos, Baronti and

Elzweig ll in connection with a study of transonic viscous flow with

interaction. The authors question whether a solution of the direct

problem (airfoil geometry given) by an iteration process between

the solutions in the viscous and inviscid regions will converge and

therefore treat the indirect problem. The airfoil contour is specified

over the forward portion of the chord and the pressure distribution

over the rearward portion. The inviscid flowfield is obtained by a

finite-difference relaxation of the transonic small disturbance equation.

The viscous equations are integrated using a Crank-Nicholson type

implicit finite difference technique. In regions containing reverse

flow, the parabolic equations take on an elliptic-like character since

the solution at a point depends on downstream information. This is

accounted for by use of upwind differencing in the reverse flow region.

The viscous flow solution technique is verified by a solution for

the incompressible flow past an elliptic cylinder using the measured

pressure distribution as input. The theoretical results agree well

with those from the experiment. The inviscid and viscous region solutions

are not obtained simultaneously in this paper to generate a solution

to the transonic interaction problem.

The method presented in the above paper has not been extended by

the authors who are at Advanced Technology Laboratories. Instead, interest
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has been generated in the more practical turbulent transonic interaction

problem. Baronti is currently working in this area and has developed

an integral technique for the integration of the equations in the

turbulent viscous region. An integral form of the turbulent kinetic

energy equation is used to take account of the history of the boundary

layer. The energy equation and the mean equation of motion describe

the flow in the viscous region. The inviscid flowfield is handled by

a finite-difference scheme which integrates the transonic small disturbance

equation. The viscous region and inviscid region equations have not

yet been integrated simultaneously so that a solution is not now available.

Baronti is presently considering the solution of the indirect problem.

Another group which is studying transonic interactions is led by

R. Melnik of Grumman. The second-order accurate, implicit finite-

difference scheme of Kellerl9 is used to integrate the viscous equations.

The boundary-layer equations are written as a set of first-order partial

differential equations. Central differences are used in the streamwise

direction to yield a block tri-diagonal system. To eliminate the pressure,

the normal derivative of the streamwise momentum equation is used. This

increases the order of the system and requires an extra boundary condition.

This condition is obtained by a combination of the pressure-displacement

thickness relationship at the viscous-layer edge and the wall compatibility

condition which relates the pressure gradient to the normal wall shear

stress gradient. Extrapolation is used in applying this condition.

The method is used to study transonic free interactions. An

asymptotic linearized solution is introduced at upstream infinity and
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the system of equations is integrated downstream. The integration

marches into the reverse flow region before numerical instability

occurs. To obtain a solution for larger downstream distances, one can

use upwind differencing as suggested above by Erdos et all or one can

proceed as in Reyhner and Flugge-Lotz2 0 and eliminate the convective

acceleration term in the reverse flow region. Currently, Melnik

is developing an asymptotic solution valid in the flowfield far

downstream in the reverse flow region to determine the proper downstream

condition which the unique solution must approach.

Melnik is also currently studying the subsonic (incompressible)

interaction that occurs in the neighborhood of the trailing edge of a

finite flat plate aligned parallel to a uniform stream. The above

finite-difference technique is being used to integrate the boundary-

layer type equations developed by Stewartson21 for the inner viscous

layer. The interaction proceeds as follows. First, the displacement

thickness is prescribed and the boundary-layer equations are integrated

and the pressure determined. The interaction equation relates the

pressure to the displacement thickness in terms of a Cauchy integral

and it is inverted to obtain an updated value of the displacement

thickness. The cycle is then repeated. Upon the successful completion

of this study, the angle of attack case will be considered.

Also, Melnik is attempting to extend the approach of Stewartson

to the turbulent interaction problem. He feels that two-dimensional

and axisymmetric laminar and turbulent interactions can be handled by

use of finite-difference techniques coupled with a careful analysis

of the asymptotic behavior of the solution.

M. Werle and co-workers at the University of Cincinnati and the
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Aerospace Research Laboratories have been studying supersonic and

hypersonic interactions. The method for solving the laminar, two-

dimensional supersonic interaction problem is described in Werle,

Polak and Bertke22. An implicit finite-difference scheme is used

in the viscous flow region. The governing equations are the boundary-

layer equations with interaction. An analytical justification for use

of this model is given by Stewartson and Williams23 who performed an

asymptotic analysis of the compressible Navier-Stokes equations for

supersonic flow over a flat plate. The numerical technique is similar

to that of Reyhner and Flugge-Lotz20 but the equations are written in

Levy-Lees type variables. In the region of reverse flow, at points

with negative streamwise velocity the convective acceleration term which

induces numerical instability is set equal to zero. If a major portion

of the viscous layer has reverse flow, it is necessary to introduce

artificially positive convective terms. A key to the success of the

technique is the control of the continuity equation and its coupling

to the momentum equation. The continuity equation is integrated from

the viscous-layer edge to the wall and iteration is necessary:to

correct the assumed value of the edge normal velocity component.

The interaction model makes use of linear theory to relate the

pressure to the inviscid streamline deflection angle for the flow past

the body plus its displacement thickness. The system is solved as

follows. The problem is an initial value one and a "shooting" approach

is used to correctly satisfy the downstream boundary condition. Self-
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similar solutions are used at the upstream station. The energy equation

is integrated using assumed profiles. The momentum and continuity

equations are then integrated. The interaction equation is used to

update the edge conditions and the cycle is repeated. Recently, Werle

has developed a relaxation scheme to satisfy the downstream boundary

condition which significantly reduces computation time.

Results for the free interaction problem agree well with those

of Stewartson and Williams23. Reasonable results are obtained for

flows with shock-wave and ramp-induced separation bubbles when the

inverse problem is considered.

The hypersonic interaction problem is treated in Dwoyer24 . Werle,

Vatsa and Bertke25 have taken a step towards solution of the. three-

dimensional interaction problem by solving for the flow past a swept

compression ramp in a Mach 3 stream. The three-dimensional boundary-

layer equations with constant cross flow are solved in Levy-Lees

type variables. Linearized theory is used to relate boundary-layer growth

to displacement surface angle. The solution technique follows that of

the two-dimensional case.

L. Olson and R. MacCormack of NASA-Ames Research Center are currently

studying the solution of laminar subsonic interactions by the numerical

integration of the Navier-Stokes equations. The-method used is the time-

dependent finite-difference technique of MacCormack26. To test the

method for subsonic viscous flows, solutions have been obtained for flow

into an inlet and flow past a flat plate cascade with Reynolds number

based on channel width varying from approximately 20 to 150. A paper
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is in preparation in which comparisons are made with existing

incompressible steady state solutions.

At present, they are studying the subsonic interaction in the trailing-

edge region of a finite flat plate aligned parallel to the stream. The

Reynolds number is of the order of 100 and the Mach number is less than

.4. Upon the successful completion of this endeavor, many avenues of

extension are open. Apparently, the next step will be to consider

adding a turbulence model to the flat-plate interaction. It is felt

that at present the cost of exploring high Reynolds number solutions

is prohibitive.
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CHAPTER VI

DISCUSSION AND CONCLUSIONS

This report describes a method proposed to treat the problem of

steady, two-dimensional, laminar, incompressible, high Reynolds

number separated flow past thin airfoils. An integral description of

the flowfield in the viscous region is used and the interaction between

the inviscid and viscous flowfields is provided for by use of a thin-

airfoil integral. In the light of the failure of this method to

generate a solution, it is useful to compare it with the methods

discussed in Chapters IV and V to help explain the lack of success and

to suggest the path that future research might follow.

Solutions to this or related problems with large Reynolds number

by means of numerical solution of the Navier-Stokes equations are not

available at present and do not appear to be forthcoming in the near

future. This is unfortunate since these "exact" solutions could be

used to test the validity of the approximate model equations which

have been proposed. The methods discussed here use the boundary-layer

equations with interaction to describe the flow in the viscous region.

Some justification of this model for a supersonic mainstream and self-

induced separation is given in Stewartson and Williams23 but the asymptotic

limit as Reynolds number goes to infinity is considered. The subsonic

interaction is on even less of a firm footing since the most extensive

research has been on the interaction at the trailing edge of a flat plate,

a case without separation or reverse flow. It is clear that the need

exists to provide further justification for the use of boundary-layer

equations to study separated flow.
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In the viscous flow region, either an integral or a finite-

difference representation is used. In the pioneering work of Lees

and co-workers, use of the integral form was motivated by the

complexity of the computation and the absence of a suitable finite-

difference scheme. According to Melnik and Werle, schemes to integrate

into reverse flow regions are well in hand and it no longer appears

to be necessary to use the integral approach.

For the inviscid flow computation, two alternatives also exist.

Most researchers consider a linearized interaction where the flow

deflection angle or pressure is related to the slope of the displacement

thickness. Klineberg and Steger and Baronti use a finite-difference

integration for the inviscid region - this provides for a conceptually

more direct matching at the viscous-layer edge.

The method described here is somewhat unique. In the viscous

region, the approach of Klineberg and Steger8 is followed. However,

in the inviscid region, the approach is similar to the integral

representation of Melnik. This may be where the difficulty arises.

The approach is the only one to use both the integral continuity equation

and the flow angle-displacement thickness slope integral simultaneously.

The equations have the same form and may not provide independent information.

The major difficulty encountered in the use of an integral form

of the linking equation, either the description given in IIB or the one

in IIIC, for the subsonic interaction case with separation is the need

to update the inviscid flowfield in the forward portion of the airfoil.

This requires an auxiliary inviscid computation and negates to some

extent the simplicity achieved by using an integral approach in the first

place. For this reason, it appears that at the present time the most
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effective way to handle the solution of the inviscid region

equations is with a finite-difference relaxation scheme. It would

be useful in treating a more general body to eliminate the "small

disturbance" limitations of some of the current schemes. The

essential features of the flow in the viscous region are captured

by the use of an integral approach however increased accuracy of the

solution and an improved knowledge of the details of the flowfield

can be obtained by the use of a finite-difference technique in this

region.

In summary, a technique is not yet available for the

solution of subsonic viscous-inviscid interactions with separation

although much research is currently in progress. It is recommended

that finite-difference schemes be used to calculate the flowfields

in both the viscous and inviscid regions.

40



References

1. Van Dyke, M., "Higher-Order Boundary-Layer Theory," Annual Review of

Fluid Mechanics, Vol. 1, Annual Reviews Inc., Palo Alto, California,

1969, pp. 265-292.

2. Davis, R.T., "Numerical Solution of the Navier-Stokes Equations for

Symmetric Laminar Incompressible Flow Past a Parabola," Journal of

Fluid Mechanics, Vol. 51, Part 3, 1972, pp. 417-433.

3. Davis, R.T., and Werle, M.J., "Numerical Solutions for Laminar

Incompressible Flow Past a Paraboloid of Revolution," AIAA Journal,

Vol. 10, No. 9, 1972, pp. 1224-1230.

4. Jacob, K., "Calculation of Incompressible Separated Flow Around Lifting

Airfoils and Calculation of Maximum Lift," Zeitschrift fur Flugwissenschaften,

Vol. 17, No. 7, 1969, pp. 221-230.

5. Bluston, H.S., and Paulson, R.W., "A Theoretical Solution for Laminar

Flow Past a Bluff Body with a Separated Wake", Journal de Mecanique,

Vol. 11i, No. 1, 1972, pp. 161-180.

6. Klineberg, J.M., and Lees, L., "Theory of Laminar Viscous-Inviscid

Interactions in Supersonic Flow," AIMAA Journal, Vol. 7, No. 12, 1969,

pp. 2211-2221.

7. Alber, I.E., "Integral Theory for Turbulent Base Flows at Subsonic

and Supersonic Speeds," Ph.D. thesis, California Institute of

Technology, 1967.

8. Klineberg, J.M., and Steger, J.L., "Calculation of Separated Flows at

Subsonic and Transonic Speeds," Presented at the Third International

Conference on Numerical Methods in Fluid Dynamics, Paris, France, July 3-7,

1972.

41



9. Steger, J.L., and Klineberg, J.M., "A Finite-Difference Method

for Transonic Airfoil Design," AIAA Journal, Vol. 11, No. 5,

1973, pp. 628-635.

10. Klemp, J.B., and Acrivos, A., "A Method for Integrating the

Boundary-Layer Equations Through a Region of Reverse Flow," Journal

of Fluid Mechanics, Vol. 53, Part I, 1972,. pp. 177-191.

11. Erdos, J., Baronti, P. and Elzweig, S., "Transonic Viscous Flow

Around Lifting Two-Dimensional Airfoils," AIAA Paper No. 72-678, 1972.

12. Klineberg, J.M., Kubota, T. and Lees, L., "Theory of Exhaust-Plume/

Boundary-Layer Interactions at Supersonic Speeds," AIAA Journal,

Vol. 10, No. 5, 1972, pp. 581-588.

13. Van Dyke, M., Perturbation Methods in Fluid Mechanics, Academic

Press, New York, 1964, p. 54.

14. Schlichting, H., Boundary-Layer Theory, McGraw Hill, New York,

Sixth Edition, 1968, p. 192.

15. Preston, J.H., and Sweeting, N.E., "The Experimental Determination

of the Boundary Layer and Wake Characteristics of a Simple Joukowski

Airfoil, with Particular Reference to the Trailing Edge Region,"

R and M 1998, 1943.

16. Klineberg, J.M. (Private Communication)

17. von Karman, T., "Calculation of Pressure Distributions on Airship

Hulls," NACA Techn. Memo 574, 1930.

18. Stevens, W.A., Goradia, S.H., and Braden, J.A., "Mathematical Model

for Two-Dimensional Multi-Component Airfoils in Viscous Flow," AIAA

Paper No. 72-2, 1972.

42



19. Keller, H.B., and Cebeci, T., "Accurate Numerical Methods for

Boundary-Layer Flows - I. Two Dimensional Laminar Flows,"

Proceedings of Second International Conference on Numerical Methods

in Fluid Dynamics , Springer-Verlag, Berline, 1971

20. Reyhner, T.A., and Flugge-Lotz, I., "The Interaction of a Shock

Wave With a Laminar Boundary Layer," Report No. 163, Division

of Engineering Mechanics, Stanford University, California, 1966.

21. Stewartson, K., "On the Flow Near the Trailing Edge of a Flat

Plate II," Mathematika, Vol. 16, 1969, pp. 106-121.

22. Werle, M.J., Polak, A., and Bertke, S.D., "Supersonic Boundary-

Layer Separation and Reattachment - Finite Difference Solutions,"

Report No. AFL 72-12-1, University of Cincinnati, Aerospace Engineering

Department, 1973.

23. Stewartson, K., and Williams, P.G., "Self-Induced Separation,"

Proceedings of the Royal Society of London, Ser. A, Vol. 312,

1969, pp. 181-206.

24. Dwoyer, D.L., "Supersonic and Hypersonic Two Dimensional Laminar

Flow Over a Compression Corner," to be presented at the AIAA

Computational Fluid Dynamics Conference, Palm Springs, California,

July 1973.

25. Werle, M.J., Vatsa, V.N., and Bertke, S.D., "Sweep Effects on

Supersonic Separated Flows - A Numerical Study," to be published

in the AIAA Journal.

26. MacCormack, R.W., "Numerical Solution of the Interaction of a Shock

Wave with a Laminar Boundary Layer," Lecture Notes in Physics,

Vol. 8, 1971.

43



TABLE I

A Typical Computation for the Method of IIIA

Separation
Point

.47S

.38S

.34S

.31S

.30S

.29S

.28S

.27S

a

.685

.706

.715

.718

.719

.719

.719

.718

At s

Ue

.839

.860

.877

.890

.898

.906

.913

.921

= 15S * 6 at
6 Trailing edge

6.93
6.28
5.97
5.82
5.75
5.69
5.67
5.67

16.0
17.4
18.8
20.2
21.5
22.7
23.8
24.7

Note: The starting point is s = .15S

TABLE 2

Computation for the Method of IIIA with Starting Point at .50S

Separation
Point

.62S

.60S

.59S

.58S

.58S

.58S

.58S

.58S

.58S

.58S

a

.722

.768

.795

.810

.819

.825

.829

.832

.834

.837

At s
Ue

.856

.898

.926

.946

.958

.966

.971

.974

.973

.975

= .15S *
6

5.96
4.73
4.07
3.71
3.49
3.37
3.28
3.22
3.16
3.11

6 at
Trailing edge

14.5
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
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Iteration
Number

1
2
3
4
5
6
7
8

Iteration
Number

1
2
3
4
5
6
7
8
9
10



TABLE 3

Computation for the Method of IIID

Iteration
Number

1
2
3

Separation
Point

.42S

.38S

.36S

a

.668

.703

.723

At s
Ue

.850

.883

.903

= 15S*
6

5.16
4.42
4.03

6 at
Trailing edge

10.7
11.2
11.7

Note: The starting point is s = .15S

TABLE 4

A Comparison of tan o
and Linking Equations

at the Joining Point Calculated from the Continuity

Iteration
Number

1
2
3

tan e from Equation (9),
Integral Continuity Equation

2.043
2.344
2.492

tan e from Equation (15),
Linking Equation

2.019
2.125
2.297

Note: The computation is the same one used in Table 3.
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APPENDIX A: POLYNOMIAL CURVE FITS OF PROFILE QUANTITIES

Table Al
7 k

Coefficients of. Functions F = Ck a for Regions I, II, III

k=O

F C C1 C2 C3 C C C

H
J
z
R
P

dH/dA
dJ/dH

0.24711 0.11056
0.37372 0.16969
1.03539 0.48373
1.25782 -0.55550

0.48745
0.11056 -0.04245
1.50031 0.28105

H 0.24711
J 0.37372
Z 1.03539
R 1.25782

. P
dH/dA -0.25057
dJ/dH 1.50031

-0.25057
-0.42859
-1.02605
1.09088

-1.19450
-0.86024
-0.84045

-0.02122
-0.02336
-0.01502
0.31964

-0.09927
0.01304
-0.04287

-0.43012
0.33036
-1.12405
7.01736

-0.70990
0.42888
3.32376

Region I

0.00435
0.00572
0.02610
-0.09077
0.00960
-0.00389
0.00262

Region II

0.1430
-5.1517
-1.1456

-33.8762
-7.1253
-1.7068

-13.8668

-0.00097
-0.00175
-0.00370
0.01398
-0.00031
0.00050

-0.4267
10.5964
3.3434

196.7688
20.8568
-54.2937
5.4767

0.000099
0.000191

-0.000935

-10.8587
- 5.8174

-371.9762
-100.2729
232.4553
30.1770

38.7425

244.3095
310.2394
-218.4664

-31.209

-263.587

Region III

H
J
z
R

0.24710
0.37368
1.03285
1.25775

-0.43642
-0.59326
-1.35026
2.02922

-0.04773
-0.00220
0.05127
3.88529

-0.19654
0.27426
0.84914
-9.20873

0.41918
-0.39421
-1.89847
16.34366

dH/dA and dJ/da are obtained by differentiating the expressions for H and J,
respectively. Then, dJ/dH 3 dJ/da/dH/da
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In

- 2.35860

= .58530

- .88674

- 2.43208

= .53431

Region IV, the following curve fits apply.

5.27379a + 6.73235a2 - 6.12945a3 + 2.34196a4 '

+ .59289a - 2.14390a2 + 1.48259a3 - .52313a4

+ .67519a - 1.66397a2 + .28925a3 - .19051a4

+ .98139a - .91905a2 + 1.01789a3 - .52020a4

- .58670a - .62596a2 + .89792a3 - .22179a4

The profile quantities are

H = H / 6, Z = ZZ/6,

Also,

dH = 6 dH/da - H d6/da

62

dJ sdJ/da - J d6/da

2

and

dJ = dJ/da/dH/da21T
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APPENDIX B: VON KARMAN POTENTIAL FLOW METHOD

Consider the potential flow of a uniform stream of speed U.

past a two-dimensional symmetric body given by the equation y = f(x).

The disturbance caused by the body will be represented by N source elements

placed along the chordline (x-axis), each with constant strength over an

interval of length Ax. The source with strength qi per unit length lies

in the interval extending from xi to xi+l.  The velocity components of the

flow induced by N of these sources at the point (x,y) are

N qi y2 + (X-Xi) 2

U(x,y) = I q- log (B1)
1 y2 + (X-Xi+1)2

N qi1 y
V(xy) = . 2 (tan - - -_ tan -1 X )

The exact surface boundary condition is given by

V(x,f(x)) df (B2)
U+U(x,f(x)) dx

If the boundary condition is satisfied at N surface points

(xkyk = f(xk)), substitution of Equation (B1) into Equation (B2) leads,

after some manipulation, to the equations
N df
I AikQi = - i (Xk) k = 1,2,3 .....N (B3)
i=1

where

Qi = qi/2UC

and

1 Yk = 1 Yk 1 df + k x)-
Aik = tan Xk- -tanlog + ('X 2

XkX Xk-Xi+l + (Xk-Xi+l)
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Equation (B3) is a set of N linear equations for the N unknown

values of the normalized source strength Qi. The equations can be put in

matrix form and solved by a variety of techniques. Here they were solved by

the Gauss-Jordan elimination method program from the University of Maryland

Computer Science Center Library.

Once the Qi's are obtained, the surface speed on the body can

be computed. The components of velocity on the surface, Uk and Vk, are

determined with the help of Equation (B1) and after some manipulation become

N UQ i  Y + (xk -xi)2

Uk = U + I lglog (B4)
i=l Yk + (xk - Xi+)2

V N 1 (Xk-Xi) (Xk-Xi+l) + Y2k

i=l (x -x.i)+y/ 2 [[(Xk -i+l)2+ Y2]l/k

The surface speed is

Ue(Xk) = (U2k+ V)1/2  (B5)

For the Joukowski airfoil, the equation of the surface is

Yk = e(2-xk)(2xk-x2k)1 /2

One would expect that the accuracy of the solution would increase

with the increase in the number of constant source intervals. This is true;

however, there is a limit on the number of intervals that can be used

for a particular geometry. For a 10% Joukowski airfoil, the maximum number

of intervals possible was approximately 100. When the number was increased

beyond this, oscillations appeared in the singularity distribution and

in the resulting surface speed.

There is not complete freedom in the choice of the endpoints

of the singularity distribution. For a closed airfoil, at the leading
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and trailing edges Yk = 0. To compute the surface speed at the leading

edge, xk = Yk = 0 must be substituted into Equations (B4) and it is clear that

if the singularity distribution begins at the airfoil leading edge and

therefore xi = 0, Uk becomes unbounded. For a particular geometry, there

is a limitation in the distance between the leading edge and the start

of the singularity distribution. For the 10% Joukowski airfoil, this

distance was .5% of the chord. Starting the distribution any closer to the

leading edge caused large oscillations in the surface speed in the leading-

edge region.

The boundary conditions are satisfied at the surface points

corresponding to the midpoints of the source elements. The following

placement of the surface points xk and the singularity points xi is chosen.

Xk = kAx

Xi = (i-1/2)Ax

For the 10% Joukowski airfoil, x = .Olc is chosen so that the first

source element begins at x = .005c.

50



LU

VI

Figure 1. Coordinate System for Viscous Region

I Orf

-SEPARATION
POINT

Distinguished by Velocity Profile Shape

Figure 2. Flow Regions

-

'REAR STAGNATION
POI NT



V

U

x

y=f(x)

Figure 3. Coordinate System for Inviscid Region

Y

N

Ucv



Ue

Us
1.2

y 08
C

1.050 - 0.6
f(x)

1.0 25

1.000 - 0.4
d f·.075 dx

050 -0.2

.025

·000 0.0

-.025

0 -2 '4 ' 6 *8 1'0

C

Figure 4. 3oukowski Airfoil, Its Slope and Surface Speed

53



1.2

1 -1

1.0
.r.

0*9 9 -POTENT

0.8

07
0 0.2 0.4 0.6 0-8

Figure 5. Typical Inviscid Surface Speed Distribution for

SECOND CYCLE

/--THIRD CYCLE

--

FIRST CYCLE

1.81.0 1.2 1.4
S
S

;letihod of IIIA (Un1 Airfoil)

20

IAL FL OW



Figure 6. Typical Iiviscid Surface Speed Distribution for~-~, ~ _e 
S 

-

_I,,Loa ot IIIA (In WJake)

1 2 3 4
s
S

5 6

55

1 20

1'10

1'00

.99

98

Uo097

96

.95

.94

IRST CYCLE

.93

.92

.91
0

7 8 9



Figure 7. Typical tan o Distribution for A:ethlod of IIIAi
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Figure 10. Solution of Weak Interaction Equations for Profile

Parameter and Displacement Thickness
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Figure 13. Component Parts of tan o Integral Shown in

Figure 12
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Figure 18. Typical Displacement Thickness Distribution for

Method of IIID
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Figure 20. Typical Inviscid Surface Speed Distribution for

Method of IIID (In Wake)
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